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A variant of the Kac-Zwanzig model is used to test the prediction of transition state
theory (TST) and variational transition state theory (VTST). The model describes the
evolution of a distinguished particle moving in a double-well external potential and
coupled to N free particles through linear springs. While the Kac-Zwanzig model
is deterministic, under appropriate choice of the model parameters the evolution of
the distinguished particle can be approximated by a two-state Markov chain whose
transition rate constants can be computed exactly in suitable limit. Here, these transition
rate constants are compared with the predictions of TST and VTST. It is shown that the
application of TST with a naive (albeit natural) choice of dividing surface leads to the
wrong prediction of the transition rate constants. This is due to crossings of the dividing
surface that do not correspond to actual transition events. However, optimizing over
the dividing surface within VTST allows one to eliminate completely these spurious
crossings, and therefore derive the correct transition rate constants for the model. The
reasons why VTST is successful in this model are discussed, which allows one to
speculate on the reliability of VTST in more complicated systems.

KEY WORDS: heat bath, stochastic equation, effective dynamics, harmonic oscilla-
tors, transition state theory, metastability, transition rates

1. INTRODUCTION

Deterministic dynamical systems often display very complicated chaotic behavior
when the number of degrees of freedom in the systems is large. Amid the com-
plexity of individual trajectories, it is sometimes the case that these trajectories
remain confined for very long periods of time in well separated regions of phase-
space and only switch from one region to another occasionally. The confinement
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is due to the presence of dynamical bottlenecks between these regions. The sys-
tem is then said to display metastability, and the regions in which the trajectories
remain confined are referred to as metastable sets. Example of systems displaying
metastability abound in nature, with examples arising from physics (phase tran-
sitions), chemistry (chemical reactions, conformation changes of bio-molecules),
biology (regulatory gene networks) and many others. In these systems, it is rea-
sonable to expect that the dynamics can be approximated by a Markov chain over
the state-space of the metastable sets with appropriate rate constants. The main
questions of interest are determining transition pathways and rates and verifying
that the resulting Markov chain does indeed approximate well the dynamics in
the system. Unfortunately, these questions are usually highly nontrivial due to the
complexity of transition pathways.

One of the earliest attempts to determine transition pathways and rate con-
stants is transition state theory (TST). (13,22,47) TST works under the assumption
that the dynamics of the system is ergodic with respect to some known equilibrium
distribution and the theory gives the exact average frequency at which trajectories
cross a given hypersurface or hyperplane which separates two metastable sets of
interest. This average frequency can be used as a first approximation for the fre-
quency of transition between the metastable sets. Unfortunately, it was recognized
early on that this approximation can be quite poor, for not every crossing of the
dividing surface corresponds to a transition between the metastable sets. Indeed,
the trajectories can cross the dividing surface many times in the course of one
transition. As a result, the TST prediction for the frequency of transition always
overestimates the actual frequency, sometimes grossly so. One way to minimize
this problem is to use the freedom in the choice of dividing surface. The best
prediction for the frequency from TST is the one corresponding to the dividing
surface with minimum crossing frequency. This idea is at the core of the so-called
variational transition state theory (VTST), (22,30,41,44) which aims to identify the
dividing surface with minimum crossing rate that is the lift-up in phase space of
a surface defined in configuration space.

Unfortunately, VTST (just like TST) is an uncontrolled approximation, for it
only provides an upper bound on the transition frequency between the metastable
sets. In general, one does not know how sharp this bound is. Other assumptions
beyond TST and VTST are usually difficult to assess too. Are successive transitions
between the metastable sets well approximated by Poisson events (i.e. statistically
independent and with exponentially distributed waiting times) as required for the
approximation of the dynamics by a Markov chain to hold? How does this property
depend on the definition of the metastable sets? Etc.

1.1. The Kac-Zwanzig Model

In this paper we study a benchmark problem, which is, on one hand, simple
enough so that many of the assumptions and approximations underlying TST and
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VTST can be examined. On the other hand, the model is complex enough to display
a wide variety of phenomena common to many dynamical systems exhibiting
metastability. The problem we consider is a variant of a model originally proposed
by Ford, Kac and Mazur (14,15) and Zwanzig. (48) It was revisited in the context of
transition rates in Refs. 7, 20, 31–34 and more recently, from a more analytical
point of view in Refs. 1, 5, 19, 21, 23, 25–27, 36.

The Kac-Zwanzig model is a system describing the evolution of a distin-
guished particle with unit mass and position x0, moving in an external potential
V (x0) and weakly coupled by a harmonic potential to a bath of N particles of mass
mi > 0 with positions xi , i = 1, . . . , N . The Hamiltonian of the system is

H (x, p) = 1

2
p2

0 + V (x0) +
N∑

i=1

p2
i

2mi
+ γ

2N

N∑

i=1

(xi − x0)2, (1.1)

where, γ > 0 is a coupling constant. Note that the interaction between the distin-
guished particle and each bath oscillator is weak and scales as N−1. For short
hand we use the vector notation x = (x0, x1, . . . , xN ), p = (p0, p1, . . . , pN ),
and pi is the momentum associated with xi . The governing equations of
motion are:

{
ẍ0 = −V ′(x0) − γ

N

∑N
i=1(x0 − xi )

ẍi = ω2
i (x0 − xi )

(1.2)

where

ω2
i = γ

Nmi
. (1.3)

and we will assume that the external potential V (x0) is the double-well potential

V (x0) = (
1 − x2

0

)2
. (1.4)

We also assume that the frequencies {ωi }i=1,...,N are independent and identically
distributed (i.i.d.) random variables with probability density function

p(ω) =
⎧
⎨

⎩

2ω∗
π

1

ω2∗ + ω2
if ω ≥ 0

0 otherwise
(1.5)

where ω∗ > 0 is a parameter playing the role of a characteristic frequency. Unless
stated otherwise, we will take ω∗ = 1. Notice that all the moments of (1.5) are
infinite, i.e. ω∗ �= Eωi = ∞, where E denotes expectation with respect to (1.5).

The solution of (1.2) lies on the constant energy shell H (x, p) = E , where E
is determined by the initial condition, E = H (x(0), p(0)). If we assume that the
initial condition is such that the energy scales as

E = N/β, (1.6)
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for some β > 0 playing the role of an inverse temperature (i.e., the total energy
is an extensive variable), then, in the limit N → ∞ the evolution of the distin-
guished particle can be described by the following set of stochastic differential
equations: (19,36)

⎧
⎨

⎩

ẋ0 = p0

ṗ0 = √
γ s − V ′(x0)

ṡ = −s − √
γ p0 +

√
2β−1Ẇ (t)

(1.7)

where W (t) is a standard Brownian motion. For the reader convenience, this
equation is derived in Appendix A.

The existence of the limiting Eq. (1.7) is the main reason why we choose the
Kac-Zwanzig model as a test case for TST. Indeed, (1.7) defines a Markov process
whose properties can be analyzed via spectral decomposition of the backward op-
erator associated with (1.7). Denoting the eigenvalues by λ0, λ1, . . . , and ordering
them as 0 = λ0 < |λ1| < |λ2| < . . ., the first zero eigenvalue λ0 = 0 is associated
with the equilibrium probability distribution of (1.7), whose density is

ρ(x0, p0, s) = Z−1e−β(V (x0)+ 1
2 p2

0+ 1
2 s2), (1.8)

where Z = ∫
R

3 e−β(V (x0)+ 1
2 p2

0+ 1
2 s2)dx0dp0ds is a normalization constant. When

β 	 1, the equilibrium probability distribution is concentrated in small sets
around the points (x0, p0, s) = (1, 0, 0) and (x0, p0, s) = (−1, 0, 0). These sets
are metastable, in the sense that any solution of (1.7) spends most of the time
inside one of them. Yet, by ergodicity, the solution must hop infinitely often from
one set to the other. To understand how these hopping events occur, one must
look at the higher eigenvalues of the backward operator associated with (1.7).
In the appendix we show that |λ1| 
 Reλ2. This spectral gap indicates that the
dynamics in (1.7) (and, hence, also the original one in (1.2) provided that N is
large enough and 1 
 β 
 N , since we took N → ∞ first to arrive at (1.7)) can
be approximated by a two-states Markov chain with rates 1

2 |λ1|. In Appendix B we
calculate this eigenvalue and its corresponding eigenfunction using the method of
matched asymptotics. We show that

λ1 = − |L|√
2π

e−β, (1.9)

where L is the negative root of the polynomial

L3 − L2 − (4 − γ )L + 4 = 0. (1.10)
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1.2. Objectives and Organization

The values for the transition rate constant obtained from the limiting Eq. (1.7)
can be compared to the predictions of TST and VTST applied to the original
Kac-Zwanzig model (1.2). This comparison is the main objective of this paper.
Since TST computes the exact rate of crossing of a dividing surface, establishing
applicability of TST amounts to answering the following question: can one find
a dividing surface such that successive crossings of this surface are statistically
independent and exponentially distributed? Here, we will show that the application
of TST with a naive (but natural) choice of dividing surface based only on the
position of the distinguished particle leads to a wrong prediction for the transition
rate constants. This is because the naive dividing surface is crossed many times
in the course of each transition between the two metastable sets. However, we
will also show that if one optimizes over the dividing surface following VTST,
all these spurious crossings can be eliminated completely. Hence, the correct
transition rate constants for the model can be computed within VTST. The optimal
dividing surface which allows one to do so is then a plane whose normal spans
all the configurational degrees of freedom in the system and not only the one
associated with the distinguished particle. We shall try to explain why this is the
case and when a similar success of VTST can be expected in other more realistic
systems.

We note that in Ref. 31, Pollak et al. approximate a generalized Langevin
equation, which has the same form of the limiting equation in our case, by the
Hamiltonian dynamics of the Kac-Zwanzig model, and then use TST for obtaining
the escape rates. In Refs. 33 and 34, they obtain the same rates from the limiting
equation by a generalization of Kramers method. (18) Although our results are
similar, the point of view is different. Here, the Kac-Zwanzig model is used as a
platform for analyzing the predictions of TST and VTST and testing the underlying
assumptions of these theories. Our results are also all derived from basic principles,
and rely on the only (uncontrolled) assumption of ergodicity.

The remainder of this paper is organized as follows. In Sec. 2 we recall the
main equilibrium statistical properties of the Kac-Zwanzig model and use them to
define two metastable sets for this system. In Sec. 3 we perform a series of detailed
numerical experiments to confirm the properties of the system obtained in Sec. 2.
In Sec. 4 we develop TST and VTST and find the predictions for the transition
rates from these theories. Finally, in Sec. 5 we summarize our findings and discuss
possible generalizations. For the reader convenience, we also recall in Appendix A
the derivation of the effective stochastic differential equation that describes the
dynamics of the distinguished particle in the limit N → ∞ and in Appendix B
we calculate the transition rates for the limiting dynamics via asymptotic analysis
of the spectrum of the backward operator associated with the effective stochastic
differential equations.
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2. METASTABILITY IN KAC-ZWANZIG MODEL

Before applying transition state theory to the Kac-Zwanzig model, we
must determine over which sets this model is metastable. From the equilibrium
probability density function (1.8) of the limiting Eq. (1.7), we know that these
sets, once projected onto (x0, p0), should reduce to small neighborhood around
(x0, p0) = (±1, 0). However, here we aim at defining these sets in the original
state-space (x, p). We do so in this section, using the equilibrium statistical me-
chanics properties of (1.2) which we recall first.

When 1 
 β 
 N , we have that E = N/β 	 1, and the energy shell
H (x, p) = E is simply connected. We will assume that the dynamics in (1.2)
is ergodic on this energy shell, in which case it follows from Birkoff ergodic
theorem that time averages can be replaced by ensemble averages with respect to
the appropriate equilibrium distribution. We will also assume that this equilibrium
distribution is the microcanonical distribution on the energy shell H (x, p) = E . In
other words, we assume that for any suitable test function g : R

N+1 × R
N+1 → R

and almost every initial condition, we have

1

T

∫ T

0
g(x(t), p(t)) dt →

∫

H (x,p)=E
g(x, p)dµE (x, p) as T → ∞. (2.11)

Here µE is the microcanonical distribution on H (x, p) = E ,

dµE (x, p) = Z−1(E)
dσ (x, p)

|∇H (x, p)| . (2.12)

where | · | is the standard Euclidean norm in R
2N+2, dσ (x, p) denotes a surface ele-

ment (Lebesgue measure) on H (x, p) = E , and Z(E) is a normalization constant.
In this paper, the ergodic assumption is not proven rigorously for the potential
in (1.4), but it will be corroborated by the numerical experiments presented in
Sec. 3.2

Assuming ergodicity, let us now show that when the inverse temperature β

and the size of the bath N are large enough and satisfy 1 
 β 
 N , (1.2) displays
metastability in the sense that one can find two disjoint sets in phase-space which
concentrate most of the probability. These two metastable sets must be regions in
phase-space around the minima x = ±(1, 1, . . . , 1) of the potential, and as shown
below they can be taken as

S−(N , β, δ) = {(x, p) : H (x, p) = N/β, x0 < 0, and H0(x0, p0) < δ}
S+(N , β, δ) = {(x, p) : H (x, p) = N/β, x0 > 0, and H0(x0, p0) < δ} (2.13)

2 Note that in the special case when V (x0) = Ax2
0 , the dynamics in (1.2) is ergodic with respect to the

microcanonical equilibrium distribution in (2.12) on every energy shell, provided that the frequencies
A, ω1, . . . , ωN are incommensurable (i.e., linearly independent over the rationals). This is consistent
with {ωi }i=1,...,N being i.i.d. drawn from the density in (1.5).
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where H0(x0, p0) = 1
2 p2

0 + V (x0) is the energy of the distinguished particle in the
absence of the bath, and δ ∈ (0, 1] is a parameter. The key reason why the sets S±
in (2.13) are metastable is that

lim
β→∞

lim
N→∞

∫

S+(N ,β,δ)
dµE=N/β (x, p) = 1

2
, (2.14)

for every δ ∈ (0, 1], and similarly for the integral over S−(N , β, δ). Note that the
order in which the limits are taken matters. Equation (2.14) can be checked by
direct calculation. Indeed, performing first the integration over x1, . . . , xN and
p1, . . . , pN , we have
∫

S+(N ,β,δ)
dµE=N/β (x, p) = Z−1

0 (N/β)
∫

H0<δ,x0>0
(1 − βH0/N )N−1dx0dp0,

(2.15)

where Z0(N/β) = ∫
H0<N/β

(1 − βH0/N )N−1dx0dp0 is a normalization constant.
In the limit as N → ∞, this is

lim
N→∞

∫

S+(N ,β,δ)
dµE=N/β (x, p) = Z−1

0

∫

H0<δ

e−β H0 dx0dp0, (2.16)

where Z0 = ∫
R

2 e−β H0 dx0dp0. The Boltzmann-Gibbs probability density function
Z−1

0 e−β H0 is in fact the marginal density for the position and momentum of the
distinguished particle in the limit of infinite bath, N → ∞. For every δ ∈ (0, 1],
each one of the sets S± contains a single energy minimum at (x0, p0) = (±1, 0),
respectively. Therefore, (2.14) follows from (2.16) by simple evaluation of this
integral by Laplace method when β 	 1.

We stress that S± are cylindrical sets in R
2N+2 around the energy minima.

Due to the high dimensionality of the model, the mass of the equilibrium measure
is not concentrated in a small volume of phase space. This is another example in
which the order of the limits in (2.14) matters.

Equation (2.14) implies that, when 1 
 β 
 N , any generic trajectory solu-
tion of (1.2) spends most of its time in either S+(N , β, δ) or S−(N , β, δ). However,
under the ergodicity assumption, this trajectory must switch between S+(N , β, δ)
and S−(N , β, δ) infinitely often. What are the rate constants of these transitions?
How do they depend on δ? Are they statistically independent, with transition
events Poisson distributed? In other words, can the dynamics in (1.2) be reduced
to a Markov process over S+(N , β, δ) and S−(N , β, δ) for some suitable choice
of δ? These are the questions which we shall investigate in the remainder of this
paper, first via a series of numerical experiments with (1.2) (Sec. 3), then within
TST and VTST (Sec. 4). Notice that, from the existence and properties of the
limiting Eq. (1.7), we know that the dynamics in (1.2) can indeed be reduced to a
two-state Markov chain with transition rate (1.9).
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3. NUMERICAL EXPERIMENTS

In this section, we perform a series of numerical experiments with (1.2) to
investigate when the dynamics can be approximated by a Markov process over the
two metastable sets in (2.13). The questions we are especially interested in are:

1. What are the rate of the transition? How do they depend on the parameter γ

(interaction strength with the bath) in the model? How do they depend on
the choice of δ in (2.13)?

2. Are successive transitions to a good approximation statistically indepen-
dent? Are the transition times in the sets (2.13) Poisson distributed with
intensity equal to the rate of transition? How do these properties depend
on δ?

The second question is especially important since it determines when the dynamics
in (1.2) can be approximated by a Markov process, and how the metastable sets
have to be chosen in this case to get the correct transition rate constants to use in
the chain.

For these experiments, we will take N = 1000 and β = 7. We will also
consider two different values of γ : γ = 1 and γ = 10. In (1.2), the equations
of motion of the bath are integrated explicitly, while the equations of motion
describing the distinguished particle are integrated numerically using the Verlet
algorithm.(45) Each time step is made reversible by a Trotter expansion of the time
evolution operator. (17,42) In all the results reported below we use the double-well
potential (1.4), but the integration scheme was also checked using the harmonic
potential, V (x0) = 1

2 x2
0 , for which (1.2) can be integrated analytically. Initial con-

ditions are chosen once from the microcanonical invariant distribution on the
energy shell E = N/β. The integration is performed up to time T = 2 × 106. The
parameters N , T and the step size are chosen so that further increase (in N and
T ) or decrease (in step size) does not change the average rates considerably. Tran-
sition rates are obtained by counting the number of times the trajectory switches
between S+ and S−. Table I details results obtained for δ = 1 and δ = 0.1. The
value δ = 0.1 is arbitrary. Any choice of 0.05 < δ < 0.8 yields practically the
same rates.

Table I. Transition rates between S− and S+
for different values of δ and γ , as obtained in

a numerical solution of the full equations of

motion (1.2). The number of bath particles is

N = 1000 and the inverse temperature is β = 7.

γ δ = 1 δ = 0.1
1 4.1 × 10−4 3.7 × 10−4

10 3.5 × 10−4 1.1 × 10−4
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The table clearly shows that for large γ , the case δ = 1 is significantly
different than with smaller δ.

There are two main sources of errors in the simulation. The first is due to
the numerical integrator, and it can be controlled by changing the step size. The
second error is, as mentioned above, due to the finite value of the total integration
time T . The origin of this error is the theoretical variance in the residence times
tA. This error dominates and it can be evaluated by considering different values
of T and by block averaging. (17) Using these techniques, we have estimated the
accuracy of the simulation as about 15% for the δ = 1 case, and about 10% with
δ = 0.1.

If the dynamics is to be quasi-Markovian, then transitions between S+ and
S− should have a Poisson distribution. Denoting by τδ the waiting time between
successive transitions, we expect that it will have an exponential distribution,

P[τδ ≥ s] = e−ks, (3.17)

for some rate constant k, which is also the average transition rate. Figure 1 depicts
the distribution of the waiting times between transitions, P[τδ ≥ s], on a semi-
log plot for the case γ = 10. For δ = 1, the graph is not linear near the origin.
However, for δ = 0.1, the linear fit is very good, indicating that transitions events
have a Poisson distribution. The slope of the fit is 1.1 × 10−4, which is also the
average transition rate. In order to test the independence of consecutive transitions,
we examine the joint distribution of successive waiting times, τ

(1)
δ and τ

(2)
δ for

various δ and verify that they are statistically independent for δ small enough, and
correlated when δ = 1. In particular, we obtain that

〈
τ

(1)
0.1τ

(2)
0.1

〉

〈τ0.1〉2
= 1.08

〈
τ

(1)
1 τ

(2)
1

〉

〈τ1〉2
= 0.81 (3.18)

where 〈·〉 denotes a running average over successive τδ . In Fig. 2 we also shows that
with δ = 0.1, P[τ (1)

0.1 + τ
(2)
0.1 ≥ s] = e−ks/2, as expected if these times are Poisson

distributed and statistically independent.
The main difficulty with the δ = 1 sets is that S+ and S− are not well separated

(i.e., their closure is not disjoint). A trajectory that reaches the saddle point at
x0 = 0 is likely to oscillate between S+ and S− several times before completing
the transition. Due to such crossing, successive transitions are not independent.
This accounts for the jump at s = 0 that can be observed in Fig. 1a. With smaller
values of δ, correlated crossings are much less frequent and the dynamics can be
approximated by a Markov process.

It is also interesting to compare these results with ones obtained using differ-
ent simulation strategies. For instance, one can redraw new positions and momenta
(with the same total energy E) every fixed time segment S, and repeat this pro-
cedure T/S times. This strategy is less prone to energy dissipation. Using this
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Fig. 1. A semi-log plot of the distribution of the waiting times between transitions, P[τδ ≥ s], for the
case γ = 10. In (a), the sharp jump near the origin is due to rapid re-crossings of the {x0 = 0} plane.
In (b), the statistics of transition times confirms the quasi-Markov hypothesis. The slope of the curve
is 1.1 × 10−4, the same as the average transition rate. The graph diverges from the linear fit near the
origin.

method, the path traced by (x(t), y(t)) consists of broken trajectories. However,
it still samples the phase space with uniform density on the same energy shell
H (x, p) = E . Ergodicity implies that the two schemes should yield the same rate
k for large enough N , T and S. Using this scheme one may also draw initial
conditions using the canonical ensemble. The equivalence between the ensembles
suggests that averages should be the same for large enough N . Indeed, all schemes
yield the same transition rates between the metastable sets (up to the simulation
errors).

4. TRANSITION STATE THEORY

In this section we discuss the results of transition state theory (TST)(2,6,47) and
variational transition state theory (VTST). (22,30,41) A recent survey of the theory
can be found in Ref. 44.
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Fig. 2. A semi-log plot of the joint distribution of successive waiting time, P[τ (1)
0.1 + τ

(2)
0.1 ≥ s], for the

case γ = 10. As expected, the slope of the curve is 5 × 10−5 which is about half the average transition
rate.

The basic idea underling TST is to evaluate the number of transitions by
counting the number of times a typical trajectory crosses a hypersurface, or hy-
perplane, that separates the metastable sets. We shall see that TST can give the
exact rate of transition between the two sets (2.13) when δ = 1, and this will corre-
spond to taking x0 = 0 as a dividing surface in the theory. But we also know from
Sec. 3 that this rate constant is not the correct one, in the sense that it is not
the rate of the two-state Markov chain approximating the dynamics. Recall from
Sec. 3 that the correct rate is obtained for sufficiently small values of δ (δ ≤ 0.8
was found to be enough), so that the sets S+ and S− are well separated in phase-
space. So it is far from obvious whether this rate can be obtained within VTST
which always divides phase-space into two adjacent regions and gives the rate of
transition between these two regions. Nevertheless, we will see that it is indeed
so in the Kac-Zwanzig model: the correct rate can be obtained within VTST by
optimizing the dividing surface among surfaces whose normal spans only the con-
figurational (position) degrees of freedom. In fact, we will see that this is the case
even when the dividing surface is an hyperplane and we will explain how this is
possible.
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4.1. TST Rate Constant

We define the mean residence time in a subset A in configuration space as
the average time a typical trajectory x(t) spends in A when it visits this set. It is
given by

tA = lim
T →∞

2

NA(T )

∫ T

0
χA(x(t)) dt, (4.19)

where χA(x) is the indicator function of the set A, and NA(T ) is the number of
times the trajectory crosses ∂ A up to time T :

NA(T ) =
∫ T

0
|χ̇A(x(t))| dt. (4.20)

The transition rate out of the set A is therefore

kTST
A ≡ 1

tA
= 1

2
lim

T →∞
NA(T )/T

1
T

∫ T
0 χA(x(t)) dt

= 1

2

limT →∞ 1
T

∫ T
0 |χ̇A(x(t))| dt

limT →∞ 1
T

∫ T
0 χA(x(t)) dt

.

(4.21)

By the ergodicity assumption, time averages can be replaced by ensemble averages
over the equilibrium distribution µE . In the case of a dividing hyperplane passing
through the origin, we have A = {x : x · n̂ > 0} for some unit vector n̂, and the
denominator in (4.21) is

lim
T →∞

1

T

∫ T

0
χ{x·n̂>0}(x(t)) dt =

∫

x·n̂>0
dµE = 1

2
, (4.22)

where we used the symmetry of the potential. Similarly, the numerator is

lim
T →∞

1

T

∫ T

0
|χ̇A(x(t))| dt =

∫

R2N+2

|n̂ · M−1p|δ(n̂ · x) dµE , (4.23)

where M is a diagonal (N + 1) × (N + 1) matrix whose entries are the masses,
1, m1 . . . , m N . Inserting (4.22) and (4.23) in (4.21) we arrive at

kTST
n̂ =

∫

R2N+2

|n̂ · M−1p|δ(n̂ · x) dµE , (4.24)

where we have denoted kTST
A by kTST

n̂ since the set A = {x : x · n̂ > 0} is determined
by n̂. To evaluate (4.24) we make a change of variables into mass weighted
coordinates

y = M1/2x, q = M−1/2p, (4.25)

to arrive at

kTST
n̂ =

∫

R2N+2

|l̂ · q|δ(l̂ · y) dµ̃E . (4.26)
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Here we defined

l̂ = M−1/2n̂

|M−1/2n̂| , (4.27)

and µ̃E is the microcanonical distribution obtained by writing the Hamiltonian
(1.1) in the new coordinates system:

H (y, q) = 1

2
q2

0 + 1

2

N∑

i=1

q2
i + U (y)

U (y) = V (y0) + γ

2N

∑ (
m−1/2

i yi − y0
)2

. (4.28)

For fixed y, the energy shell H (y, q) = E is an N + 1 dimensional sphere. Inte-
grating over the new momenta coordinates yields

kTST
n̂ = CN

∫

U (y)<N/β

δ(l̂ · y)

(
1 − β

N
U (y)

)N/2

dy

= CN

∫

U (y)<N/β,l̂·y=0

(
1 − β

N
U (y)

)N/2

dσ, (4.29)

where in the second equality we have changed the N + 1 dimensional volume
integration over the Dirac delta distribution to a N dimensional surface integral.
The constant CN is obtained by properly accounting for the normalization of the
distribution µ̃E=N/β . A calculation similar to the one that led to (2.14) gives

CN ∼ 1

2
(2π )−N/2+1

(
N

β

)−N

, (4.30)

where the asymptotic equality sign ∼ means that ratio of the expressions on both
side tends to 1 as N → ∞, β → ∞ (in this order).

At this point we will assume that the external potential V (y0) in U (y) can be
expanded to second order in y0 around y0 = 0. This approximation is justified at
the end of this subsection where it is shown to be valid when the minimum of U (y)
on the plane {x · n̂ = 0} is attained at the origin. When this is the case higher order
terms introduce a correction of the order of 1/β in the limit as N → ∞, β → ∞
with β/N → 0. Expanding the potential V (y0) to second order in y0 yields

kTST
n̂ = CN

∫

Uquad(y)<N/β,l̂·y=0

(
1 − β

N
Uquad(y)

)N/2

dσ, (4.31)

where

Uquad(M−1/2y) = 1 − 2y2
0 + γ

2N

N∑

i=1

(
m−1/2

i yi − y0
)2

, (4.32)
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The integral in (4.31) can be straightforwardly evaluated in the limit as N → ∞,
β → ∞ with β/N → 0. This gives

kTST
n̂ ∼

√
2

π

(
�N

i=1mi

)−1/2
( γ

N

)N/2 (|det H n
N |)−1/2

e−β (4.33)

where H n̂
N denote the Hessian obtained by restricting Uquad(y) to the N dimensional

linear subspace perpendicular to n̂.

Justification of (4.33). Consider the integral in (4.29):

I =
∫

U (y)<N/β

δ(l̂ · y)

(
1 − β

N
U (y)

)N/2

dy. (4.34)

We show that on the plane l̂ · y, the situation is similar to the case of (2.14), and
the restricted potential can be approximated by a quadratic expansion in y0. In
order to see that, assume, without loss of generality, that lN �= 0. Integrating out
yN yields

I =
∫

Ū (y)<N/β

(
1 − β

N
Ū (y)

)N/2

dy, (4.35)

where

Ū (y) = V (y0) + γ

2N

N−1∑

i=1

(
m−1/2

i yi − y0
)2 + γ

2N

(
m−1/2

N l−1
N

N−1∑

i=0

li yi + y0

)2

.

(4.36)

This potential has the form

Ū (y) = V (y0) + C(y0) + 〈y′ − b(y0), A(y′ − b(y0))〉, (4.37)

where C(y0) is a quadratic function of y0, y′ = (y1, . . . , yN−1), A is a (N − 1) ×
(N − 1) constant, positive definite matrix and b(y0) is a vector in R

N−1, which is
linear in y0. Integrating out y1, . . . , yN yields

I = DN (det A)−1/2
∫

V (y0)+C(y0)<N/β

(
1 − β

N
(V (y0) + C(y0))

)N−1/2

dy0,

(4.38)

with

DN =
√

π

2N

(
N

β

)(N−1)/2 N(N − 1)SN−1

(N + 1/2)
, (4.39)
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where (z) denotes the Euler Gamma function. For fixed β, the integrand of
(4.38) converges uniformly to an exponent in the limit N → ∞. Hence,

I ∼ DN (det A)−1/2
∫

R

e−β(V (y0)+C(y0))dy0, (4.40)

and we can use the Laplace approximation, which amounts to expanding V (y0) +
C(y0) to second order in y0. Since C(y0) is quadratic, this is the same as expanding
V (y0).

4.2. Naive TST: Rate Across the Plane x0 = 0

Since the metastability originates from the double-well potential, a naive (but
at this point not so natural anymore) candidate for a dividing surface is the plane
{x0 = 0}. Substituting n̂ = l̂ = (1, 0, . . . , 0) into (4.33) yields,

kTST
{x0=0} ∼

√
2

π
e−β. (4.41)

This calculation can also be easily derived from the first line of (4.29) by integrating
out y0 and eliminating the delta function. The factor in the exponential is β times
the energy barrier, which was taken to be one. Note there is no dependence in
γ , which is in clear contradiction to the numerical results for the transition rates
with δ = 0.1. Taking β = 7, the value used for the numerical simulation yields
kTST
{x0=0} = 4.1 × 10−4, which is in very good agreement with the numerical result

for δ = 1. This is expected because with δ = 1, the metastable sets S+ and S− are
tangent to the plane {x0 = 0}.

4.3. VTST: Rate Across the Plane with Minimum Recrossing

Due to the possible recrossings of the dividing, TST always over counts the
number of transitions between the metastable sets S±, especially in the relevant
case when these sets are separated in phase space. One way to improve this result is
to minimize the TST rate for different choices of hypersurfaces. In variational TST
(VTST) we optimize the rate across all the dividing surfaces that are the lift-up
in phase space of dividing surfaces in configuration space. In our application of
VTST, we shall further assume that the dividing surfaces are hyperplanes which
satisfy the condition that the minimum of the potential energy U (y) is obtained at
the origin. At the end of this Section we show that the VTST prediction for the
transition rates is in this case given by

kVTST = |L|√
2π

e−β (4.42)
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Table II. A comparison between transition rates obtained by TST, VTST and

simulation. Transition rates between S− and S+ for different values of δ. The

TST column shows the TST predictions with the {x0 = 0} plane, given by

Eq. (4.41). The VTST column shows the Variational TST prediction (4.42).

Simulation results are obtained with N = 1000 bath particles and inverse tem-

perature is β = 7.

γ TST {x0 = 0} sim δ = 1 VTST sim δ = 0.1

1 4.1 × 10−4 4.1 × 10−4 ± 4 × 10−5 3.8 × 10−4 3.7 × 10−4 ± 2 × 10−5

10 4.1 × 10−4 3.5 × 10−4 ± 4 × 10−5 1.2 × 10−4 1.1 × 10−4 ± 1 × 10−5

where L is the unique positive solution of the cubic equation

L3 + L2 − (4 − γ )L − 4 = 0. (4.43)

This is exactly the same as the limiting rate (1.10). Equation (4.43) was previously
obtained by Pollak et al. in Ref. 31. Note that unlike the TST result, the rate (4.42)
depends on γ (for large γ , L and hence kVTST is inversely proportional to γ ). Note
also that in our analysis we take the high temperature limit, β → ∞, first, and only
then γ → 0. Switching the order of these limit may change these predictions. (16)

The direction of the plane leading to the VTST rate in (4.42) is random.
However, it spans all of the configurational degrees of freedom. Table II compares
the predictions of TST and VTST with the numerical simulations.

The error of the theoretical predictions of TST and VTST are of the order of
1/β. Taking these errors into account, it shows that in the Kac-Zwanzig model,
VTST gives the correct value for the transitions rate between the set S+ and S−
even in the relevant case when δ is small and the successive transition are Poisson
events. This surprising result will be elucidated in Sec. 4.4. In contrast, the naive
TST prediction, which is independent of γ , provides only a rough approximation
when δ is small and γ is large.

It is also interesting to note that in our model, the plane separating the two
minima points, ±(1, 1, . . . , 1), that is being crossed the fewest number of times is
not a good indication for the transition rate between the metastable states. The low-
est rate is obtained on a plane that is perpendicular to the direction corresponding
to the bath particle that has the lowest frequency. Since the interaction of a single
particle with x0 is weak (of the order of 1/N ), that particle will simply oscillate
close to its natural frequency, which is also of order 1/N . The minimum of the
Hamiltonian on this plane is close to zero for large N , and is obtained away from
the origin. This minimum must be excluded because the corresponding dividing
plane intersects the metastable sets S+ and S−. Adding the constraint that on the
plane, the minimum of the potential is obtained at the origin, the minimum rate is
the one given in (4.42).

Derivation of (4.42). The full Hessian matrix at zero, HN+1, has a sin-
gle negative eigenvalue, λ−, and N positive ones. Therefore, the plane that will
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maximize the restricted Hessian is perpendicular to the eigenvector that corre-
sponds to λ−. Therefore, HN = HN+1/λ−. The full Hessian matrix at the origin
reads

(HN+1)i j = ∂2U (y)

∂y j∂yk

∣∣∣∣
y=0

, (4.44)

where,

H00 = −4 + γ

H0i = − γ

N
m−1/2

i

Hi j = γ

N
m−1

i δi j . (4.45)

Performing the row manipulation row0 → row0 + √
mk · rowk for every k =

1 . . . N , the matrix becomes lower triangular. Its determinant is

HN+1 = −4
( γ

N

)N
(�i mi )

−1/2 . (4.46)

Substituting into (4.33),

kTST
n̂ ∼

√|λ−|√
2π

e−β. (4.47)

Denoting by λ and l = (1, l1, . . . , lN ) the eigenvalues and eigenvectors, they satisfy
{

(γ − 4) − γ

N

∑N
i=1 m−1/2

i li = λ

− γ

N m−1/2
i + γ

N m−1/2
i li = λli , i = 1, . . . , N .

(4.48)

Solving for li and substituting back we obtain an equation for λ

γ − 4 − γ

N

N∑

i=1

ω2
i

ω2
i − λ

= λ, (4.49)

where we used the definition of mi = γ /(Nω2
i ). Looking for the negative eigen-

value, we denote λ = −L2. By the strong law of large numbers, as N → ∞, (4.49)
reduces to

γ − 4 − γ E

[
ω2

1

ω2
1 + L2

]
= −L2. (4.50)

Using the probability density for the frequencies ω in (1.5), we have for L > 0,

E

[
ω2

1

ω2
1 + L2

]
= 1

1 + L
. (4.51)
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Substituting into (4.50), L solves

L3 + L2 − (4 − γ )L − 4 = 0. (4.52)

This polynomial has a single positive root for all γ ≥ 0.

4.4. Local Dynamics Around the Hyperbolic Point: Why Does

VTST Works While Naive TST Does Not?

Following Refs. 2, 6, 24, it has been proved in Refs. 40, 43, 46 that one
can always find a hypersurface in phase-space that separates the metastable sets
(S+ and S− in our case) and is crossed exactly once in each transition. As shown
above in Sec. 4.3, in the Kac-Zwanzig model it is possible to find a hyperplane
whose normal spans configuration space with the same properties, which is quite
remarkable. We now try to explain why in this model this is the case. The discussion
should shed some light on the more general question of when one can find a
hyperplane in configuration space that is crossed exactly once between transitions.
We also discuss the problem of finding a hypersurface that is not necessarily a
plane.

After changing variables to mass weighted coordinates, we can think about
the system as a particle with unit mass that is moving in a N + 1 dimensional
potential. From the discussion justifying the quadratic approximation, we also
know that almost all trajectories that go from one metastable set to the other pass
with y0 
 1. Locally, the potential U (y) is a quadratic form. It is important to
note that by locally we means a cylindrical set {y|y0 < ε}, and not a small sphere
around the origin. The quadratic form, Ū (y), has N stable directions and a single
unstable one, l̂. In this coordinate system, the dynamics has the form

{
z̈0 = −λ−z0

z̈i = λi zi , i = 1, . . . , N
(4.53)

where z0 = y · l̂, the component of y in the unstable direction, and z1, . . . , zN cor-
respond to the components of y in the directions of the remaining (stable) eigen-
vectors. Hence, λ−, λi > 0. The value of λ− was obtained in the limit N → ∞,
with probability one, in (4.52). In this coordinates system, the N + 1 variables
are uncoupled. Out of these, z1, . . . , zN are harmonic oscillators with frequencies√

λi . Since they are independent random variables, some of the frequencies are
very large. The corresponding variables oscillate on a time scale that is much
shorter than the dynamics of z0, determined by the value of λ−. These consid-
erations imply that if we consider any plane that is not perpendicular to l̂, the
trajectory of the full system (z0, z1, . . . , zN )(t) will cross that plane many times
while the particle is close to the saddle point. The transition rate of such a plane
will be large, making it a poor candidate for TST. On the other hand, the plane
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perpendicular to l̂ is crossed exactly once in every transition between metastable
sets. This is because the z0 variable cannot “turn around” and return to the origin
after crossing it. In the VTST calculation, we use the same reasoning for finding
the optimal rate. It is important to stress the point that unlike other models, (16) the
dynamics at finite N is Hamiltonian. In particular, the origin of spurious recross-
ings of the TST candidate plane are oscillations in stable directions and not by
random noise.

Local consideration such as the one described in the previous paragraph may
fail due to two possible factors. The first is due to the quadratic approximation
(which also justifies the planar approximation). This issue was addressed in the
justification of (4.29). In systems with high dimensions, one cannot assume that
the trajectories switching between metastable sets pass close to the origin. In our
model, the approximation is justified since all N directions are quadratic to begin
with. The second problem has to do with our definition of a transition. A “true”
transition is a trajectory that starts at one metastable set and ends in another.
Once the particle gets out of the range in which the quadratic approximation
holds, we do not know a priori whether it moves to the new metastable set or
turns around back without completing the transition. In the Kac-Zwanzig model,
our numerical experiments indicate that the probability that the particle does not
complete the transition is extremely small. This is also confirmed via the analysis
of the limiting Eq. (1.7) (see Appendix B). These nonlocal effects will be more
difficult to assess in more general systems. An example in which the particle
returns to the separating surface before completing the transition is discussed in
Ref. 16.

5. CONCLUDING REMARKS

In some way, one can say that TST and VTST provide the exact answer
to a question which is usually the wrong one. These theories give the exact
average frequency of crossing a dividing surface in phase space that separates two
metastable sets of interest. Unfortunately, this exact frequency is not, in general,
the actual frequency of crossing between the sets because trajectories may cross
the dividing surface many times in the course of each transition between the sets.
As a result, the TST frequency is a upper bound, and sometimes a poor one, of the
actual frequency one should use in the Markov chain description of the effective
dynamics of the system. VTST does better than TST, as it minimizes the rate of
crossing among a given class of dividing surfaces. However, it may not give the
correct rate either.

In this paper, the difficulties with TST were illustrated on the Kac-Zwanzig
model. Quite surprisingly, it was also shown that VTST gives the exact rates of
crossing between the two metastable sets in this model. Unfortunately, this nice
conclusion should be amended by a word of caution.
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The argument presented in Sec. (4.4) is local in nature, both because it uses
a quadratic approximation of the potential near the saddle point and because it
requires that once a trajectory goes a little bit away from the dividing surface, then
it makes it all the way to one of metastable sets before returning to the surface
long afterward. These assumptions are justified in the Kac-Zwanzig model, but
they could very possibly fail in more complicated systems. Because the transition
region is not localized at a saddle point, the VTST dividing surface must in general
be a more complicated surface than the lift-up in phase space of a hyperplane in
configuration space. In fact, it is likely that in many situations one should use
other techniques, such as TPS(3,8) or the string method,(10−12,35) which are more
sophisticated than TST and VTST, to obtain a nonlocal description of the transition
pathways between the metastable sets. It is nevertheless encouraging that VTST
can be used with success at least on some systems, and that the reasons for its
success or failure can be understood from the behavior of the trajectories in and
out of the dividing surface.

APPENDIX A: DERIVATION OF (1.7)

Here we proceed informally and refer the reader to Ref. 1 for a mathematically
rigorous derivation of (1.7). Similar rigorous derivations can be found in Refs. 5,
19, 21, 36. The derivation presented here uses the canonical ensemble rather than
the micro-canonical one, i.e., at t = 0 bath particles are distributed according to
their equilibrium Gibbs measure which is given by

xi (0) = N (x0(0), N/βαi )

pi (0) = N (0, mi/β), (A.1)

where N (m, σ 2) denotes the Gaussian distribution with mean m and variance σ 2.
In Ref. 1 we treat the case of microcanonical initial conditions and prove that the
solution of the equation of motion at finite N , (1.2), converges strongly (in L2) to
the solution of the limiting Eq. (1.7) in every finite time segment [0, T ], T < ∞.

The dynamics of the full system of N + 1 particles is given by (1.2). Inte-
grating the bath variables xi yields

ẍ0 + V ′(x0) +
∫ t

0
RN (t − τ )ẋ0(τ )dτ = 1√

β
ξN (t), (A.2)

where

RN (t) = γ

N

N∑

i=1

cos ωi t, (A.3)
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and

ξN (t) = −
√

βγ

N

N∑

i=1

(
[xi (0) − x0(0)] cos ωi t + pi (0)

sin ωi t

ωi mi

)
. (A.4)

Note that initial conditions appear only in ξN , which plays the role of a random
noise. It is a Gaussian process with zero mean and covariance

E0 [ξN (t1)ξN (t2)] = RN (t1 − t2). (A.5)

In the limit N → ∞, the strong law of large numbers implies that for any fixed t ,
RN (t) will converge to its average R(t)

R(t) = lim
N→∞

RN (t) = γ lim
N→∞

1

N

∑
cos ωi t = γ E[cos ωt] = γ e−|t |. (A.6)

In order to evaluate the rate of convergence, we calculate the second moment of
RN . Breaking all double sums into the diagonal and off-diagonal parts yields

E[RN (t1)RN (t2)] − E[RN (t1)]E[RN (t2)] = O

(
1

N

)
. (A.7)

We conclude that the limiting equation describing the dynamics of the distin-
guished particle is

ẍ0 + V ′(x0) + γ

∫ t

0
e−(t−τ ) ẋ0(τ )dτ = 1√

β
ξ (t), (A.8)

where ξ (t) is a Gaussian process with zero mean and covariance function γ e−|t |.
Hence, it is an Ornstein-Uhlenbeck process at equilibrium which solves the
stochastic differential equation

dξ = −ξ dt +
√

2γ dWt , ξ (0) = N (0, 1). (A.9)

(A.8) and (A.9) can now be written in the form of (1.7) with s(0) = ξ (0)/
√

βγ .
This equation can also be written as

d

dt

⎛

⎝
x0

p0

s

⎞

⎠ = −K∇H(x0, p0, s) +
√

2

β
σ Ẇt . (A.10)

Here H(x0, p0, s) = V (x0) + 1
2 p2

0 + 1
2 s2,

σ =
⎛

⎝
0
0
1

⎞

⎠ , (A.11)
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and K = K S + K A, with

K S = σσ T =

⎛

⎜⎝
0 0 0

0 0 0

0 0 1

⎞

⎟⎠

K A =

⎛

⎜⎝
0 −1 0

1 0 −√
γ

0
√

γ 0

⎞

⎟⎠ . (A.12)

This form is used in Appendix B.

APPENDIX B: TRANSITION RATE FOR THE LIMITING EQUATION

In this section we detail the calculation leading to the theoretical transition
rate of the effective dynamics of the distinguished particle. Similar calculations in
the gradient case can be found in Refs. 29, 37, 38, but to the best of our knowledge
the result for non-gradient systems of type (A.10) is new. As the calculation shows,
there is exactly one nontrivial eigenvalue that tends to zero as β → ∞, and the
corresponding eigenvector determines the metastable sets.

We assume the dynamics satisfies an equation of motion in R
d of the form

du

dt
= −K∇H(u) +

√
2

β
σ Ẇt , (B.1)

whereH is the Hamiltonian, σ a d × m matrix such that σσ T = K S , the symmetric
part of K , and Bt is an m dimensional BM. We also assume that the eigenvalues
of K have positive real part. This implies that the stability of extremum points
of K∇H is of the same type as with ∇H. In the model considered here, these
parameters are given by (A.10), hence the equation is in three dimensions.

B.1. The Eigenvalue Problem

The eigenvalue problem associated with (B.1) is

Lϕ ≡ −(K∇H) · ∇ϕ + 1

β
K S : ∇∇ϕ = −λϕ (B.2)

This equation admits a trivial solution ϕ0 = 1 with λ = 0, consistent with the
existence of a unique equilibrium distribution for (B.1). It is easily verified that
this distribution is the Boltzmann-Gibbs distribution with density

ψ(u) = Z−1e−βH where Z =
∫

R
d

e−βHdu (B.3)
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The second eigenvalue, −λ1, is real and of the order of λ1 ≈ e−β A, as we show
next. The analysis also allows one to construct only one such small eigenvalue, i.e.
it shows that this is the unique vanishing eigenvalue in the system and λ1 
 Re λ2,
implying bistability.

B.2. Perturbation in β−1

Using regular expansion in β−1, to leading order the eigenvector, ϕ1, associ-
ated with −λ1 satisfies

−(K∇H) · ∇ϕ1 = 0. (B.4)

Hence, ϕ1 is constant along the flow lines of K∇H. The critical points under the
flow of K∇H are the same as that of ∇H. The origin is a saddle points while
(±1, 0, 0) are stable. In the limit of zero temperature, β → ∞, the dynamics
follows the flow lines of K∇H. Therefore, for large β the metastable sets are the
two basin of attractions of the stable minima. The stable manifold through the
origin is the hypersurface that separates the two sets.

Denote by S the hypersurface separating the two basins of attractions and
by A± the regions flowing toward (±1, 0, 0), respectively. The flow of K∇H on
S is tangent to the surface, i.e. S is a stable invariant manifold for the dynamics
u̇ = −K∇H. From (B.4), we have

ϕ1 =
{

C+ if u ∈ A+

C− if u ∈ A−
(B.5)

The constants C+ and C− can be determined from the orthogonality condition∫
R

n ϕ1ψdu = 0, and the normalization condition
∫

R
n ϕ2

1ψdu = 1. To leading order
in β−1 these are explicitly:

{
C2

+N+ + C2
−N− = 1

C+N+ + C−N− = 0,
(B.6)

where

N± =
∫

A±
ψdu. (B.7)

Since H is symmetric we have N+ = N− = 1/2, and without loss of generality,
we can take C± = ±1/

√
2.

Equation (B.4) fails around S. Therefore, in the vicinity of this surface a
boundary layer type of analysis must be performed to determine the behavior of
ψ1 and, eventually, evaluate λ1. This can be done by writing (B.2) using a local
coordinates system around the hypersurface S. Decompose u = (r, z), where z
is a local coordinate system on S and r is the signed distance between u and S,
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counted positively in A+ and negatively in A−. For definiteness, we will assume
that the saddle point on S is located at (z, r ) = (0, 0). Let η = √

βr and look for
a solution of (B.2) as a function of (η, z). The Hamiltonian, its derivatives, and ϕ1

can then be expanded in power of β−1 near the surface S. Denoting by n̂(z) the
unit normal to S at z and using K∇H(0, z) · n̂(z) = 0, (B.2) becomes, to leading
order β0,

a(z)η
∂ϕ1

∂η
+ b(z)

∂2ϕ1

∂η2
− [K∇H(0, z)] · ∇zϕ1 = 0 (B.8)

Here ∇z denotes the projection of the gradient onto S and

a(z) = −n̂(z) · [K∇∇H(0, z)n̂(z)]
b(z) = n̂(z) · K n̂(z)

(B.9)

Notice that both a(z) > 0 and b(z) > 0 since S is a stable invariant manifold.

B.3. Solution of (B.8)

Equation (B.8) must be solved with the boundary condition
limη→±∞ ϕ(η, z) = C±. Look for a solution of (B.8) in the form

ϕ1(η, z) = φ1(ηc(z)) (B.10)

for some function c(z) > 0 to be determined later. Letting ζ = ηc(z), (B.8)
becomes

ã(z)ζ
dφ1

dζ
+ c2(z)b(z)

d2φ1

dζ 2
= 0 (B.11)

where

ã(z) = a(z) − [K∇H(0, z)] · ∇zc(z). (B.12)

Equation (B.11) can be solved if ã(z) = c2(z)b(z), which fixes c(z). As we will
see later, the exact form of c(z) will not matter, so we will only assume that this
exists. Notice simply that K∇H(0) = 0 (since by assumption z = 0 is the location
of the saddle point on S), and therefore

ã(0) = a(0), c(0) =
√

a(0)

b(0)
(B.13)

The solution of (B.11) subject to limζ→±∞ φ1(ζ ) = C± is:

φ1(ζ ) = 1√
π

∫ ζ

−∞
exp

(
−1

2
ζ ′2

)
dζ ′ − 1√

2
, (B.14)
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or, in terms of ϕ1

ϕ1(η, z) =
√

ã(z)

πb(z)

∫ ηc(z)

−∞
exp

(
−1

2

ã(z)

b(z)
η′2

)
dη′ − 1√

2
. (B.15)

We are now in position to find λ1. To do so multiply both sides of (B.2) by
the equilibrium density, ψ = Z−1e−βH, and integrate over A+:

∫

A+

[
−(K∇H) · ∇ϕ1 + 1

β
K S : ∇∇ϕ1

]
ψdu = −λ1

∫

A+
ϕψdu. (B.16)

Since ∇∇ϕ1 is symmetric, K A : ∇∇ϕ1 = 0, and using Green’s Theorem, the left
hand side of (B.16) becomes

1

β

∫

A+
∇ · (

ψ K T ∇ϕ1
)
du = 1

β

∫

S
ψ n̂(z) · K T ∇ϕ1(0, z)dz

=
√

1

πβ
Z−1

∫

S

√
ã(z)

b(z)
n̂(z) · K T n̂(z)e−βHdz

=
√

1

πβ
Z−1

∫

S

√
ã(z)b(z)e−βHdz, (B.17)

where we used ∇ϕ1 = √
βã/πbn̂ on S and n̂ · K T n̂ = n̂ · K n̂ = b(z). Therefore,

λ1 = −
√

1

πβ

∫
S

√
ã(z)b(z)e−βHdσ (u)∫

A+
ϕ1e−βHdu

. (B.18)

The next step is to evaluate the two integrals in (B.18) using the Laplace
method. For large β the denominator is approximated by

∫

A+
ϕ1(u)e−βHdu = ϕ1(umin)

(
2π

β

)d/2 1√
det Hmin

=
√

2

det Hmin

(
2π

β

)d/2

, (B.19)
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where Hmin = ∇∇H(umin) is the Hessian at the energy minimum. We also used the
fact that in the limit β → ∞, ϕ1(umin) → C+ = 1/

√
2. Evaluating the numerator,

∫

S

√
ã(z)b(z)e−βHdσ =

(
2π

β

)(d−1)/2 √
a(0)b(0)

1√
det H⊥

, (B.20)

where we used (B.13) and H⊥ is the restriction of the Hessian at the saddle point
(the origin in our case) to the hyperplane perpendicular to n̂. Substituting into
(B.18) gives

λ1 = − 1

2π

√
a(0)b(0)

√
det Hmin

det H⊥
e−β�H, (B.21)

where �H = H(0, 0, 0) − H(umin) is the energy barrier.

B.4. Evaluation of n̂, a and b

The direction n̂0 = n̂(0) can be expressed in terms of the eigenvector, t̂ ,
corresponding to the negative eigenvalue λ− of K T H0, i.e.

K T H0 t̂ = λ− t̂, (B.22)

where H0 = ∇∇H(0) is the full Hessian at the origin. The normal vector n̂0 is
the unit vector that is perpendicular to the stable manifold of the flow K∇H out
of the saddle point, such that t̂ · n̂0 > 0. Therefore, if v̂ is an eigenvector of K H0

with positive eigenvalue µ, then n̂0 · v̂ = 0. We claim that the vector K −T t̂ , where
K −T = (K T )−1, also has this property and hence, n̂0||K −T t̂ . Indeed, using (B.22),
we have

λ−(K −T t̂ · v̂) = (λ− t̂ · K −1v̂)

= (K T H0 t̂ · K −1v̂)

= (t̂ · H0 K K −1v̂) = (t̂ · H0v̂)

= (t̂ · K −1 K H0v̂)

= (K −T t̂ · K H0v̂) = µ(K −T t̂ · v̂). (B.23)

Therefore,

(µ − λ−)(K −T t̂ · v̂) = 0, (B.24)
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and since λ− < 0 < µ, we conclude that for any eigenvector v̂ of K H0 with
positive eigenvalue µ. This implies

n̂0 = ± 1

|K −T t̂ | K −T t̂ . (B.25)

We also have,

H0 t̂ · v̂ = K −T K T H0 t̂ · v̂ = λ−K −T t̂ · v̂ = ±|K −T t̂ |λ−n̂0 · v̂ = 0, (B.26)

which implies that,

n̂0 = ∓ 1

|H0 t̂ | H0 t̂ . (B.27)

The sign in (B.27), which is always opposite to that of (B.25), is determined by
comparing the two equations for n̂0. Substituting into (B.9) yields

a(0) = |λ−|, b(0) = |λ−| |t̂ · n̂0|
|H0 t̂ | . (B.28)

B.5. Evaluation of H⊥

We now show that

det H⊥ = |det H0|
∣∣t̂ · n̂0

∣∣
∣∣H0 t̂

∣∣ . (B.29)

Denote

Hm = H0 + mn̂0 ⊗ n̂T
0 . (B.30)

The first step is to show that for large enough m, Hm is positive definite. H0 is
symmetric and therefore diagonalizable. It has one unstable and d − 1 stable di-
rections. Denoting the eigenvector of H0 corresponding to the negative eigenvalue
by u1, and the rest by u2, . . . , ud , the definition of n̂0 implies it is not perpendicular
to u1. Hm is also symmetric and hence diagonalizable. Denoting its eigenvectors
by v1, . . . , vd , we have vi · Hmvi = vi · H0vi + m(vi · n̂0)2. If vi ⊥ n̂0, then it can
be written as a linear combination of u2, . . . , ud , and vi · Hmvi = vi · H0 > 0.
Otherwise, vi · Hmvi is positive for large enough m.

The next step is to express det H⊥, which is also positive definite, using
Gaussian integrals:

π (d−1)/2 (det H⊥)−1/2 =
∫

y·n̂=0
e−y·H⊥ ydσ

=
∫

y·n̂=0
e−y·H0 ydσ =

∫

y·n̂=0
e−y·Hm ydσ. (B.31)
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Also,

π (d−1)/2 (det Hm)−1/2 =
∫

R
d

e−u·Hm udu

= (n̂0 · t̂)
∫

y·n̂=0
dσ

∫

R

dse−(y+st̂)·Hm (y+st̂) (B.32)

where we used a change of variables u = y + st̂ with y ⊥ n̂0 whose Jacobian is
n̂0 · t̂ . Using (B.27) this integral becomes

π (d−1)/2 (det Hm)−1/2 = (n̂0 · t̂)
∫

y·n̂=0
e−y·Hm ydσ

∫

R

dse−s2[|H0 t̂ ||n̂0·t̂ |+m(n̂0·t̂)2]

= π (d−1)/2 (det H⊥)−1/2 (|H0 t̂ ||n̂0 · t̂ | + m|n̂0 · t̂ |2)−1/2
.

(B.33)

Hence,

|det H⊥| = |det Hm | |n̂0 · t̂ |
|H0 t̂ | + m|n̂0 · t̂ | . (B.34)

The last step is relating det Hm to det H0. Using (B.27),

Hm = H0

(
I d − m

|H0 t̂ | t̂ ⊗ n̂T
0

)
, (B.35)

where I d denotes the d × d identity matrix. The matrix in parenthesis has d
eigenvectors: d − 1 vectors perpendicular to n̂0 with eigenvalue 1 and t̂ with
eigenvalue 1 − m|n̂0 · t̂ |/|H0 t̂ |. Hence,

det Hm =
(

1 − m|n̂0 · t̂ |
|H0 t̂ |

)
det H0. (B.36)

Substituting into (B.34) and taking the limit m → ∞ yields the formula for the
restricted Hessian, (B.29).

B.6 Conclusion

Substituting (B.28) and (B.36) into (B.21) yields,

λ1 = −|λ−|
2π

√∣∣∣∣
det Hmin

det H0

∣∣∣∣e
−βH. (B.37)

Note that although the algebra is more complicated, the final formula is exactly
the same as the well known Kramers formula, obtained in the simple case of
K = I d. (4,13,28)
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In our model the effective dynamics is given by (B.1). The limiting equation
is three dimensional with parameters according to (B.12). Substituting into (B.37)
yields

λ1 = − |λ−|√
2π

e−β, (B.38)

where λ− is the negative root of the characteristic polynomial of K T H0:

λ3
− − λ2

− − (4 − γ )λ− + 4 = 0. (B.39)

Pollak et al. (34) obtain the same transition rate for the limiting equations from
a different approach. Using the known rate obtained by the VTST method at fixed
N they construct an eigenfunction for the forward (Fokker-Planck) operator. Our
method is independent of the details of the Kac-Zwanzig model itself and only
makes use of the limiting process. In addition, solving the eigenvalue problem
shows there is only a single eigenvalue of order e−β .
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